Multiple Solutions of a Nonlinear Biharmonic Equation on Graphs

نویسندگان

چکیده

In this paper, we consider a biharmonic equation with respect to the Dirichlet problem on domain of locally finite graph. Using variation method, prove that has two distinct solutions under certain conditions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Positive Solutions to a Nonlinear Biharmonic Equation

In this note we use the Nehari manifold and fibering maps to show existence of positive solutions for a nonlinear biharmonic equation in a bounded smooth domain in Rn, when n = 5, 6, 7. Mathematics Subject Classification: 35J35, 35J40

متن کامل

Existence of Multiple Solutions for a Quasilinear Biharmonic Equation

Using three critical points theorems, we prove the existence of at least three solutions for a quasilinear biharmonic equation.

متن کامل

EXISTENCE OF MULTIPLE SOLUTIONS FOR A p(x)-BIHARMONIC EQUATION

In this article, we show the existence of at least three solutions to a Navier boundary problem involving the p(x)-biharmonic operator. The technical approach is mainly base on a three critical points theorem by Ricceri.

متن کامل

Ring-type singular solutions of the biharmonic nonlinear Schrödinger equation

We present new singular solutions of the biharmonic nonlinear Schrödinger equation (NLS) iψt(t,x)− ψ + |ψ |2σψ = 0, x ∈ R , 4/d σ 4. These solutions collapse with the quasi-self-similar ring profile ψQB , where |ψQB(t, r)| ∼ 1 L2/σ (t) QB ( r − rmax(t) L(t) ) , r = |x|, L(t) is the ring width that vanishes at singularity, rmax(t) ∼ r0L(t) is the ring radius, and α = (4 − σ)/(σ (d − 1)). The blo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in mathematics and statistics

سال: 2022

ISSN: ['2194-671X', '2194-6701']

DOI: https://doi.org/10.1007/s40304-021-00273-4